Synopsis: Whisky-Inspired Coatings

As a whisky drop dries, a combination of molecules in the liquid ensure a spatially uniform deposition—a finding that could inspire coating technologies.
Synopsis figure
Ernie Button

Surface engineers might prefer whisky over coffee, at least as a model liquid for creating films and coatings. Unlike coffee, whisky tends to leave uniform deposits when it dries. Hyoungsoo Kim and Howard Stone from Princeton University, New Jersey, and their colleagues explored whisky’s secret by measuring the fluid motion within evaporating droplets. The results showed that a combination of molecules—surfactants and polymers—help guide the deposition process in whisky.

Many solutions produce an uneven stain when they dry out on a surface. This so-called “coffee-ring effect” arises because evaporation is faster at the edges of a drop than at the center. When liquid flows outward to replenish this loss, particles in the solution are dragged along and deposited at the edge. This nonuniform residue is undesirable for many applications, including 3D printers that build layer upon layer using liquid deposition.

Researchers have previously found that mixing solvents (such as water and alcohol) can reduce the coffee-ring effect, but only for submillimeter drops. Large drops of whisky, however, appear to produce uniform stains, as revealed in recent images taken by Phoenix-based photographer Ernie Button. Intrigued, Stone’s team used florescent markers to track the motion of fluid in whisky drops and observed inward flow that partly countered the outward flow from differential evaporation. They explained this behavior as due to fat-like surfactant molecules that lower the surface tension. As a drop evaporates, the surfactants collect on the edge, creating a tension gradient that pulls liquid inward (the so-called Marangoni effect). In addition, plant-derived polymers stick to the glass, helping to channel particles to the substrate where they adhere. To confirm this picture, the researchers showed that whisky-like liquids lacking either polymers or surfactants did not produce uniform stains.

This research is published in Physical Review Letters.

–Michael Schirber


More Features »


More Announcements »

Subject Areas

Fluid DynamicsMaterials Science

Previous Synopsis

Interdisciplinary Physics

Playing Games with Schrödinger

Read More »

Next Synopsis

Nuclear Physics

Fission Takes Its Time

Read More »

Related Articles

Viewpoint: How to Make Devices with Weyl Materials
Materials Science

Viewpoint: How to Make Devices with Weyl Materials

Weyl semimetals could be used to build a range of electronic devices, from superlenses for scanning tunneling microscopes to transistors. Read More »

Viewpoint: Relaxation is a Two-Step Process for Metallic Glasses
Materials Science

Viewpoint: Relaxation is a Two-Step Process for Metallic Glasses

Measurements of several metallic glasses under strain reveal that the materials relieve stress through a two-step process that has previously been seen only in “softer” glasses. Read More »

Synopsis: Capillary Effect in Grains Explained
Soft Matter

Synopsis: Capillary Effect in Grains Explained

Numerical simulations show that a previously observed capillary-like action in vibrating grain systems is due to convective motion of the grains.   Read More »

More Articles