Synopsis

Drops Act Like Tension “Compasses”

Physics 10, s52
A liquid drop’s shape can be used to detect tension anisotropies in an underlying elastic membrane.
R. Schulman et al., Phys. Rev. Lett. (2017)

Want to know the tension in a stretched membrane or thin film? Spraying it with liquid droplets might give you the answer. Rafael Schulman from McMaster University, Canada, and colleagues have shown that otherwise spherical drops resemble ellipses when they are sprayed on a film in which the tension is greater in one direction than in the other. The finding suggests that droplets could map the tension in a film much like iron filings trace the field from a magnet.

The group suspended an elastic polymer film such that it had a uniform tension and then sprayed the film with glycerol drops. Imaging from above, they observed that the drops assumed near-perfect circular shapes. But when the team stretched the film to induce an anisotropic tension, drops that were subsequently sprayed onto the surface looked more like peanut M&M’s—fatter along one axis than the other. Specifically, each drop’s long axis was lined up with the direction in which the film had been most strained, that is, the direction of higher tension.

Based on a side view of the drop-film profile, Schulman’s group and his colleagues at the ESPCI Paris were able to calculate the local tension in the film using an existing model, which they modified to incorporate anisotropic tension. This enabled them to map both the direction and magnitude of stresses at each point in the film. And unlike other tension-measurement approaches, theirs left the film intact.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.


Subject Areas

Fluid DynamicsSoft Matter

Related Articles

Witnessing the Birth of Skyrmions
Condensed Matter Physics

Witnessing the Birth of Skyrmions

Using thin layers of chiral nematic liquid crystals, researchers have observed the formation dynamics of skyrmions. Read More »

Link Verified between Turbulence and Entropy
Statistical Physics

Link Verified between Turbulence and Entropy

The verification of a 63-year-old hypothesis indicates that nonequilibrium statistical mechanics could act as a theoretical framework for describing turbulence. Read More »

Ocean Measurements Detect Conditions for Giant Waves
Fluid Dynamics

Ocean Measurements Detect Conditions for Giant Waves

Observations of the Southern Ocean show that wind can produce the surface states needed to generate rare “rogue” waves. Read More »

More Articles