Synopsis: Topological Defect on the Move

Researchers have directed the motion of a domain-wall-like topological defect through a crystal of trapped ions.
Synopsis figure
J. Brox et al., Phys. Rev. Lett. (2017)

Topological defects are defects that break the order of otherwise ordered systems—think structural defects in crystalline solids or domain walls separating regions of different magnetic orientation in ferromagnets. They affect the properties of the systems in which they arise, but studying how the defects emerge and move is tough to do in a controlled way, especially in the presence of thermal fluctuations. In a new study, Jonathan Brox from the University of Freiburg, Germany, and colleagues report how they have used the exquisite controllability of trapped cold ions to create and direct the motion of a topological defect in a crystalline system.

The researchers created a zigzag array of some 30 laser-chilled ions confined in a radio frequency trap. The array has two ground-state configurations, which are mirror images of one another. Realizing both configurations in a single structure requires a domain-wall-like topological defect, or “kink,” between the two. Brox and colleagues generated such a kink and subjected it to thermal noise. They showed that this thermal environment can feed enough energy to the defect to make it vibrate and eventually move down the crystal and exit through one of its ends—which end depends on the kink’s internal structure. They imaged the defect and its motion by scattering laser photons off the ions and collecting them with a CCD camera. The array could be used to study how tiny molecular machines extract energy from a thermal environment in order to move.

This research is published in Physical Review Letters.

­–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Condensed Matter PhysicsAtomic and Molecular Physics

Previous Synopsis

Next Synopsis

Quantum Physics

Direct View of Exchange Symmetry

Read More »

Related Articles

Synopsis: Bloch Theory Scratches the Surfaces
Condensed Matter Physics

Synopsis: Bloch Theory Scratches the Surfaces

Bloch’s famous theory describing the electron states in a crystalline solid has been recast to apply to surface states as well. Read More »

Viewpoint: Scattering Atoms Catch the <i>d </i>Wave
Condensed Matter Physics

Viewpoint: Scattering Atoms Catch the d Wave

d-wave interactions like those thought to underlie unconventional superconductivity have been implemented in a cold-atom gas. Read More »

Focus: Field-Free Spin Patterns
Condensed Matter Physics

Focus: Field-Free Spin Patterns

A vortex-like magnetic spin structure inside a small disk of material is stable without an external magnetic field and might be useful for information storage or processing. Read More »

More Articles