Synopsis

Revamping the Skyrmion Model

Physics 11, s141
Theorists extend a nearly six-decades-old model for the atomic nucleus and use it to predict shape effects that the traditional model misses.
C. Naya and P. Sutcliffe, Phys. Rev. Lett. (2018)

A famous but flawed model in nuclear physics is getting a reboot. Introduced by Tony Skyrme in 1961, the model describes the nucleus with twists, or “skyrmions,” in a quantum field. This description is attractive because it’s one of few that can be connected directly to quantum chromodynamics, the fundamental theory of quarks and gluons. But while the skyrmion idea correctly predicts some nuclear properties, it is known to miss others. Now, Carlos Naya and Paul Sutcliffe of Durham University in the UK have adapted the skyrmion model and shown that, unlike the traditional version, it correctly predicts the shapes of several light nuclei.

Skyrme’s original concept describes the nucleus in terms of quark-antiquark pairs known as pions. These pions create a quantum field, and the number of twists in this field equates to the number of protons and neutrons (nucleons) in the nucleus. The model correctly predicts some nuclear properties, such as certain allowed quantum states. But it overestimates nuclear binding energies and fails to predict the clustering of nucleons that occurs in some nuclei.

Naya and Sutcliffe’s extension of the model includes rho mesons, which are heavier than pions. With this extension, they compute the nucleon density within nuclei consisting of one to eight nucleons. Their new model not only predicts nucleon clustering effects that the original model misses, but it also predicts binding energies that are 3 times closer to the experimental values. The researchers say their revised model doesn’t provide a “perfect match” with experiments, but it should do progressively better as heavier mesons are incorporated.

This research is published in Physical Review Letters.

–Jessica Thomas

Jessica Thomas is the Editor of Physics.


Subject Areas

Nuclear Physics

Related Articles

Nuclear Physics from Particle Physics
Particles and Fields

Nuclear Physics from Particle Physics

A new theoretical analysis connects the results of high-energy particle experiments at the Large Hadron Collider with three-proton correlations inside nuclei. Read More »

Heavy Element Quandary in Stars Worsened by New Nuclear Data
Astrophysics

Heavy Element Quandary in Stars Worsened by New Nuclear Data

A widening gap between the cerium-140 abundance predicted by theories and that measured in observations of certain stars indicates a potential need for updated models of element formation. Read More »

Colossal Magnetic Field Detected in Nuclear Matter
Nuclear Physics

Colossal Magnetic Field Detected in Nuclear Matter

Collisions of heavy ions briefly produced a magnetic field 1018 times stronger than Earth’s, and it left observable effects. Read More »

More Articles