Synopsis

A Time Crystal Without a Driver

Physics 12, s133
A calculation shows that an elusive, isolated quantum time crystal may not be far from reality.  

In conventional crystals, a highly ordered arrangement of atoms or molecules repeats periodically in space, unaffected by external perturbations. In 2012, theorist Frank Wilczek imagined this ordering extended to the fourth dimension in a system that moves periodically in time at an internally set rhythm (see 15 October 2012 Viewpoint). These so-called time crystals became a reality five years later, but so far, these quantum systems have all required some external driver. Now, Valerii Kozin from the University of Iceland and Oleksandr Kyriienko from the University of Exeter, UK, have explained how to create a time crystal completely isolated from the environment. Such a stable, closed system could be exploited for precision measurement tools and quantum information storage.

Researchers realized the first ever time crystals in systems of trapped ions and diamond-hosted impurities (see 18 January 2017 Viewpoint). In those experiments, a laser pulse kickstarted oscillations in the particles’ spins. This motion stabilized to a period twice that of the initial kick—a signature of a so-called discrete time crystal. In the absence of the laser or other external driving force, however, thermodynamic constraints imply that such time crystals cannot exist.

Kozin and Kyriienko have now shown that those constraints can be bypassed. They modeled a collection of particles whose spins interact over long distances, causing one particle’s quantum state to mirror that of another far-removed particle. The researchers found that if all the particles start in a superposition of all-spin-up and all-spin-down states, the system should behave as a time crystal that shows resilience to local perturbations and remains stable at zero kelvin. The authors suggest that this prediction could be tested in a system of interacting qubits, such as trapped ions, where multispin operations can be engineered.

This research is published in Physical Review Letters.

–Rachel Berkowitz

Rachel Berkowitz is a science writer based in Seattle, Washington.


Subject Areas

Quantum PhysicsAtomic and Molecular Physics

Related Articles

Hidden Behavior of Quantum Quasicrystals
Quantum Physics

Hidden Behavior of Quantum Quasicrystals

A new theory unveils the exotic low-energy excitations of quasicrystals formed of quantum particles. Read More »

Microwaves Can Suppress Chemical Reactions
Chemical Physics

Microwaves Can Suppress Chemical Reactions

The heating effect of microwaves has long been used to accelerate reactions. A new experiment shows that microwaves can also excite molecules into a less reactive state. Read More »

Gauging the Temperature Sensitivity of a Nuclear Clock
Atomic and Molecular Physics

Gauging the Temperature Sensitivity of a Nuclear Clock

Researchers have characterized the temperature-induced frequency shifts of a thorium-229 nuclear transition—an important step in establishing thorium clocks as next-generation frequency standards. Read More »

More Articles