Synopsis

Carbon Monoxide Leaves Cosmic Ice with a Kick

Physics 16, s173
Molecular “kicks” induced by ultraviolet light are predicted to cause carbon monoxide molecules to be released from the icy layers that cover cosmic dust.
S. Del Fré et al. [1]

In cold, star- and planet-forming regions of the cosmos, gaseous carbon monoxide (CO) can freeze on the surfaces of dust grains. Ultraviolet (UV) light can cause CO ice to transform back into a gas, counterbalancing the freezing process. Researchers have previously studied such photo-induced desorption in the lab, but struggled to develop a microscopic theory able to reproduce observations. Now a team of theorists at the University of Lille and experimentalists at Sorbonne University, both in France, has proposed such a theory [1]. A better understanding of this process could aid exoplanet-chemistry studies, as a CO molecule is the starting point for the synthesis of many organic compounds.

To perform controlled CO-desorption experiments, the Sorbonne University team exposed CO ices to UV light in ultrahigh vacuum. Through spectroscopy, they watched the desorption process while measuring the populations of rotational and vibrational states of the involved CO molecules.

Molecular dynamics simulations by the University of Lille team suggests the desorption process can occur in three steps. First, UV light excites a CO molecule in the ice, causing it to vibrate. Second, this vibrating molecule “kicks” one or two neighboring molecules, transferring its vibrational energy to them. Third, a cascade of molecular interactions transfers energy from these vibrating molecules to other CO molecules at the surface, giving them sufficient energy to overcome the binding energies and leave the ice.

The researchers say that the simulation predictions offer “remarkable” agreement with their experiments and with all “other experimental findings of the past decades.” They add that the three-step mechanism could play a role in the photo-desorption of more complex ice mixtures in astrophysical settings and in Earth’s atmosphere.

–Matteo Rini

Matteo Rini is the Editor of Physics Magazine.

References

  1. S. Del Fré et al., “Mechanism of ultraviolet-induced CO desorption from CO ice: Role of vibrational relaxation highlighted,” Phys. Rev. Lett. 131, 238001 (2023).

Subject Areas

Chemical PhysicsAstrophysicsPhysical Chemistry

Related Articles

An Ultrahigh Neutrino Detection Makes Waves
Astrophysics

An Ultrahigh Neutrino Detection Makes Waves

A new underwater neutrino experiment—for now, only partially installed—has detected what appears to be the highest-energy cosmic neutrino observed to date. Read More »

A Technique for Fingerprinting Multiple Trace Gases
Chemical Physics

A Technique for Fingerprinting Multiple Trace Gases

An updated method for detecting trace amounts of gases could allow researchers to identify minuscule amounts of multiple gases in the same sample. Read More »

Antiprotons from Beyond the Solar System
Particles and Fields

Antiprotons from Beyond the Solar System

The spectrum of cosmic-ray antiprotons has been measured for a full solar cycle, which may allow a better understanding of the sources and transport mechanisms of these high-energy particles. Read More »

More Articles