Synopsis

Get the Hydrogen Out

Physics 9, s95
Using clean helium made with a two-step purification process could prevent damaging blockages in cryostats.
M. Gabal et al., Phys. Rev. Applied (2016)

Liquid helium is the unsung partner in numerous low-temperature experiments. Unfortunately, the cryogen is expensive. So to preserve it, a growing number of labs have liquefiers, which collect evaporated helium and cool it back into liquid. Conrado Rillo, of the University of Zaragoza, Spain, and the Spanish National Research Council, and his colleagues have now developed a “clean helium” recipe for liquifiers that should prevent a costly problem for cryogenic experiments: blockages caused by solidified hydrogen molecules.

For certain low-temperature applications, researchers need a cryogen that’s colder than standard liquid helium (4.2 K). Pushing helium through a narrow capillary such that it cools upon expanding at the exit can chill the liquid to 3 K and below. But at these temperatures, molecular hydrogen ( H2)—a common impurity in helium that is tough to remove—almost completely solidifies. Rillo and his co-workers thought that H2 collecting on the capillary walls might explain numerous reported failures in cryogenic experiments. To test their hypothesis, they pumped helium through a pinched capillary. Within 10 hours the thin tube had a clog, which only cleared when the tube was warmed above H2’s melting point.

The researchers estimate that, to prevent blockages, the H2 concentration has to be roughly ten million times lower than that of commercial grade helium. To reach this purity, they propose a two-step solution: a pre-freeze that condenses out the H2 (and other impurities) and the use of a getter purifier, which absorbs the remaining H2. They produced this clean helium at the University of Zaragoza’s helium liquefaction plant, and using it kept their cryogenic instruments blockage-free for more than a year.

This research is published in Physical Review Applied.

–Jessica Thomas

Jessica Thomas is the Editor of Physics.


Subject Areas

Industrial PhysicsStatistical Physics

Related Articles

Nanoscale Warming Is Faster Than Cooling
Statistical Physics

Nanoscale Warming Is Faster Than Cooling

Contrary to conventional wisdom, a sufficiently small, cold object warms to the temperature of its surroundings faster than a warm object cools, according to a new theory. Read More »

The Complex Variability of Climate
Statistical Physics

The Complex Variability of Climate

Climate scientist Michael Ghil describes gaps in our understanding of climate change.   Read More »

City Sizes May Affect Blackout Probabilities
Complex Systems

City Sizes May Affect Blackout Probabilities

The probabilities of electricity blackouts may be influenced by the sizes of cities more than by the details of power grids. Read More »

More Articles