Synopsis: Terahertz-Driven Chemistry

Terahertz pulses drive certain reactions on a metal surface by selectively exciting some of the adsorbed molecules.
Synopsis figure
H. Ogasawara/SLAC and APS/Joan Tycko

Certain chemical reactions occur at a higher rate when the reactants are stuck to a two-dimensional surface. But sometimes the desired reaction competes with other processes. To control the surface chemistry, Jerry LaRue, from the SLAC National Accelerator Laboratory in California, and his colleagues demonstrate a new technique in which pulses of light in the terahertz frequency range selectively drive an oxidation reaction on a metal surface. The pulses effectively gives a kick to adsorbed oxygen atoms, so that they move along the surface and interact with other molecules more often.

The surface reaction studied by LaRue et al. is the conversion of carbon monoxide (CO) and oxygen into carbon dioxide (CO2). This oxidation process is commonly performed in a car’s catalytic converter, where metals serve as the surface catalyst. The researchers looked specifically at ruthenium—a relatively inexpensive catalyst material but one in which CO oxidation must compete with CO desorbing from the surface.

Previous work showed that optical pulses could increase CO oxidation on ruthenium, but the pulses also heat the surface, causing increased desorption. In their experiments, LaRue and his colleagues utilized terahertz pulses produced at SLAC’s Linac Coherent Light Source. The team showed that the electric field from the pulses causes electrons to oscillate near the surface, and this electron motion weakens the bonds that hold oxygen atoms to the metal. The partly released oxygen atoms have extra energy for moving along the surface and colliding with CO molecules forming CO2. The terahertz pulses do not increase the surface temperature, so the CO desorption rate remains unchanged. The researchers found that terahertz stimulation led to as much as a third of adsorbed CO converting to CO2.

This research is published in Physical Review Letters.

–Michael Schirber


Features

More Features »

Subject Areas

Industrial PhysicsChemical Physics

Previous Synopsis

Next Synopsis

Quantum Information

Good Vibrations

Read More »

Related Articles

Viewpoint: Heaviest Element Has Unusual Shell Structure
Nuclear Physics

Viewpoint: Heaviest Element Has Unusual Shell Structure

Calculations of the structure in oganesson—the element with the highest atomic number—reveal a uniform, gas-like distribution of its electrons and nucleons. Read More »

Viewpoint: 3D Imaging of Dislocations
Industrial Physics

Viewpoint: 3D Imaging of Dislocations

A combination of imaging techniques provides an unprecedented 3D view of a network of crystal defects known as dislocations. Read More »

Viewpoint: Atom Scattering Picks Out the Heavyweights
Nuclear Physics

Viewpoint: Atom Scattering Picks Out the Heavyweights

Atomic-beam diffraction emerges as a viable approach to separating isotopes within the beam. Read More »

More Articles