Synopsis

Pinning Down Superheavy Masses

Physics 11, s137
A new measurement technique directly determines the masses of two superheavy isotopes, providing confirmation that previous indirect measurements were correct.
J. Gates and J. Pore/Lawrence Berkeley National Laboratory

Researchers synthesize superheavy elements by smashing together nuclei. But identifying the mass of the resulting short-lived isotopes is tricky, often relying on indirect methods. Now, Jacklyn Gates from Lawrence Berkeley National Laboratory, California, and her colleagues have directly measured the masses of two superheavy isotopes. These two firm data points strengthen researchers’ confidence in previous mass measurements of neighboring isotopes in the periodic table.

Normally, physicists determine the mass of a single nucleus by tracking its decay—sometimes through several steps—to some well-known daughter nucleus. Imagine, for example, that a nucleus decays by emitting four alpha particles (each containing two protons and two neutrons), arriving at the identifiable daughter nucleus nobelium-255 (atomic number Z=102). Working backwards, researchers can determine that the original nucleus was darmstadtium-271 (Z=110). The problem for superheavy elements with atomic numbers above Z=113 is that the daughter nuclei are largely unknown, so researchers have devised other, less certain, techniques for identifying the decay channels of the isotopes in this mass range.

In their direct method, Gates and colleagues irradiate an americium-243 (Z=95) target with a beam of calcium-48 (Z=20) ions, producing superheavy nuclei with a variety of masses. These nuclei pass through a series of devices that spatially separates them based on their mass-to-charge ratio. After this filtering, the nuclei embed in a silicon detector that records alpha emissions. Any detected alpha pinpoints the position—and therefore the mass—of an embedded nucleus. Using this method, the team detected isotopes of moscovium (Z=115) and nihonium (Z=113), determining their masses to be 288 and 284, respectively. By measuring decay times and energies, the researchers were able to show that their results are consistent with previous superheavy mass studies.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Nuclear Physics

Related Articles

Nuclear Physics from Particle Physics
Particles and Fields

Nuclear Physics from Particle Physics

A new theoretical analysis connects the results of high-energy particle experiments at the Large Hadron Collider with three-proton correlations inside nuclei. Read More »

Heavy Element Quandary in Stars Worsened by New Nuclear Data
Astrophysics

Heavy Element Quandary in Stars Worsened by New Nuclear Data

A widening gap between the cerium-140 abundance predicted by theories and that measured in observations of certain stars indicates a potential need for updated models of element formation. Read More »

Colossal Magnetic Field Detected in Nuclear Matter
Nuclear Physics

Colossal Magnetic Field Detected in Nuclear Matter

Collisions of heavy ions briefly produced a magnetic field 1018 times stronger than Earth’s, and it left observable effects. Read More »

More Articles