Synopsis: Mapping a Tumor’s Mechanical Properties with Light

A new experiment uses a light probe to measure the mechanical response of a tumor, which provides information about its anatomy and the efficacy of therapeutic agents.
Synopsis figure
J. Margueritat et al., Phys. Rev. Lett. (2018)

The successful treatment of a tumor largely depends on the capacity of anticancer drugs to infiltrate its bulk. Diagnosing the effectiveness of this process requires tools that can probe the tumor in its entirety. Now, a team led by Thomas Dehoux at the University of Lyon, France, has developed a light-scattering method that maps out the mechanical properties of a tumor’s cellular structure as well as its internal fluids, revealing changes due to chemotherapy treatment.

A tumor can be represented as a cluster of elastically coupled cells, with fluid inside the cells and additional fluid in between them. So far, studies trying to characterize tumors have mostly looked at their near-static, low-frequency (Hz) mechanical response, which essentially reveals information about the elastic cell network. These approaches tend to ignore the tumor’s fluids, even though these fluids are expected to play a significant role in mechanisms such as tumor growth and drug penetration. Dehoux and colleagues devised a method that employs monochromatic light to extract the high-frequency (GHz) mechanical response, which depends on both the fluid component and the elastic cell structure. The team shined a light beam into a target tumor and recorded the scattered light from different micrometer-sized regions. As the scattering depends on the local elastic properties, the team was able to construct images showing the variations in mechanical properties within the tumor. The researchers demonstrated their ability to identify tissues that have a greater probability of spreading to other parts of the body. They also tracked how the tumor evolved in response to chemotherapy, which revealed a diminished impact of the treatment in the tumor core where the drugs have difficulty penetrating.

This research is published in Physical Review Letters.

–Nicolas Doiron-Leyraud

Nicolas Doiron-Leyraud is a Corresponding Editor for Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Next Synopsis

Acoustics

One-Way Sound Transport

Read More »

Related Articles

Focus: Biological Attacks Have Lessons for Image Recognition
Biological Physics

Focus: Biological Attacks Have Lessons for Image Recognition

A trick that pathogens use against the immune system turns out to be similar to a technique for fooling an image recognition algorithm. Read More »

Synopsis: Chemical Conversations Lead to Particle Cliques
Soft Matter

Synopsis: Chemical Conversations Lead to Particle Cliques

When particles such as cells or a biological molecules leave chemical trails, a variety of clustering behaviors result, according to simulations. Read More »

Synopsis: Dandelion Fluff Perfected for Flight
Fluid Dynamics

Synopsis: Dandelion Fluff Perfected for Flight

Calculations show that the number of white filaments springing from the top of a dandelion seed is optimized for steady flight, allowing the seeds to cruise long distances through the air. Read More »

More Articles