Synopsis: A New Model for Electrolyte Conductivity

A reliable and computationally cheap way of calculating the ionic conductivity of a concentrated electrolyte in a battery involves modeling ion clusters.
Synopsis figure
A. France-Lanord and J. C. Grossman, Phys. Rev. Lett. (2019)

A battery’s performance depends on how well its ions transport electrical charges. To boost the conductivity, one can increase the concentration of ions in the electrolyte. But if the concentration gets too high, the ions aggregate in clusters, which reduces the conductivity. Now, Arthur France-Lanord and Jeffrey Grossman at the Massachusetts Institute of Technology, Cambridge, have developed a model for calculating the ionic conductivity of concentrated electrolytes in the presence of such clusters. Their method provides insights into the physical mechanisms of ion conduction and could help researchers more efficiently screen for new battery electrolytes.

Calculations of ionic conductivity often rely on the Nernst-Einstein equation, which assumes that the ions are noninteracting particles that contribute to the conductivity via their charge and ability to diffuse. In concentrated electrolytes where ions strongly interact, this assumption breaks down. Compared with idealized, noninteracting ions, ion clusters form with a reduced net charge and an altered diffusivity, so calculations of conductivity are off by orders of magnitude.

Instead of accounting for all possible interactions, which would be computationally costly, France-Lanord and Grossman developed a Nernst-Einstein formalism for the clusters. Their model allows for all possible types of clusters but makes the assumption that clusters, once formed, do not interact with one another. The duo applied their approach to an ideal electrolyte model with a known cluster population. These results agreed with a more time-consuming exact calculation. Then they calculated the conductivity of lithium ions in a standard polymer electrolyte, which showed that their model could explain recent peculiar experimental results in terms of cations trapped in negatively charged clusters.

This research is published in Physical Review Letters.

–Nicolas Doiron-Leyraud

Nicolas Doiron-Leyraud is a Corresponding Editor for Physics based in Montreal, Canada.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials ScienceChemical Physics

Previous Synopsis

Next Synopsis

Plasma Physics

Igniting Fusion in the Lab

Read More »

Related Articles

Synopsis: Soft Biological Tissues Can Be Piezoelectric
Biological Physics

Synopsis: Soft Biological Tissues Can Be Piezoelectric

Artery walls, tendons, and heart valves can generate an electric voltage when squeezed—an effect that could be harnessed to diagnose important diseases. Read More »

Viewpoint: Phonon Heat Transport Near the Melting Point
Materials Science

Viewpoint: Phonon Heat Transport Near the Melting Point

Molecular dynamics simulations can fully describe phonon propagation in aluminum, which could enable accurate predictions of phonon thermal conductivity. Read More »

Viewpoint: The Heat in Antiferromagnetic Switching
Condensed Matter Physics

Viewpoint: The Heat in Antiferromagnetic Switching

New experiments suggest that heat might be responsible for the current-induced voltage signals measured in antiferromagnets, and not a rotation of the material’s spins as previously thought. Read More »

More Articles