Synopsis

Predicting Contagion Speed

Physics 13, s20
A new analysis predicts the speed at which an infectious disease spreads to specific individuals in a network.
iStock.com/Orbon Alija

The rate at which contagious diseases spread depends dramatically on a society’s connectivity. The medieval Black Plague in Europe advanced a mere 1.5 km/day. In the modern, globally connected society, infections like Zika or the coronavirus can diffuse at frightening speeds of hundreds of km/day. Existing approaches for analyzing infectious diseases, however, are still limited in their ability to predict how diseases spread at the level of individual people. Now, Sam Moore and Tim Rogers of the University of Bath in the UK have developed an analytical technique for predicting the speed of contagion for individuals within a network. The model might lead to tools that can help health authorities identify the most vulnerable or dangerous individuals in an outbreak.

Physicists have developed many models for describing the dynamics of infectious diseases. Most previous analyses based on such models either describe how diseases spread on large scales—cities, social groups, or regions—or require computationally costly numerical simulations to capture individual dynamics. To develop an analytical, individual-level description, Moore and Rogers apply a statistical mechanics approach that likens contagion to the passing of a message. This “message passing” accurately captures some realistic disease features, such as probabilities of infection and recovery that change as the epidemic progresses. The duo derives analytical formulas that, for a simple network, can be used to compute the arrival time of the infection at each individual in the network. Compared to numerical methods, the authors say that their analytical approach is faster and better at pinpointing the network and disease characteristics that most affect the epidemic speed.

This research is published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Subject Areas

Complex Systems

Related Articles

Uncovering Networks in Rainforest Plants
Biological Physics

Uncovering Networks in Rainforest Plants

The spatial arrangement of plants in a rainforest corresponds to a special “critical” state that could be vital for ecosystem robustness.   Read More »

The Neuron vs the Synapse: Which One Is in the Driving Seat?
Complex Systems

The Neuron vs the Synapse: Which One Is in the Driving Seat?

A new theoretical framework for plastic neural networks predicts dynamical regimes where synapses rather than neurons primarily drive the network’s behavior, leading to an alternative candidate mechanism for working memory in the brain. Read More »

Liquid Veins Give Ice Its Road-Wrecking Power
Complex Systems

Liquid Veins Give Ice Its Road-Wrecking Power

The unfrozen water-filled channels that crisscross multicrystal ice help feed ice growth, which can lead to fractures in materials such as asphalt and cement. Read More »

More Articles