Synopsis

Laser Stars Under the Lens

Physics 10, s68
Raman scattering could contaminate astronomical observations that use artificial, laser-generated “stars” to correct for the effect of atmospheric turbulence.
ESO/F. Kamphues

“Laser guide stars” are an astronomer’s best friends. Created by directing laser light into the sky and making sodium atoms in Earth’s upper atmosphere glow, they help astronomers measure and correct for the effect of atmospheric turbulence on astronomical observations. Frédéric Vogt and colleagues from the European Southern Observatory (ESO), in Chile and Germany, now characterize a previously overlooked source of contamination for observations that rely on these artificial stars: laser-induced Raman scattering.

It is known that, when using laser guide stars, some of the laser photons are scattered by air molecules on their way up to the upper atmosphere. But until now, astronomers have largely ignored Raman scattering, in which photons lose energy by exciting molecules to higher vibrational levels. That’s mainly because Raman-scattered laser photons are in the visible wavelength range, whereas most astronomical spectrographs equipped with laser-guide-star technology operate in the infrared regime. But as observatories start using this technology with optical spectrographs, laser-induced Raman scattering needs to be characterized.

This is exactly what Vogt and co-workers did. The team used the MUSE optical integral field spectrograph mounted on the Very Large Telescope at ESO’s Paranal Observatory in Chile to record the spectra of the “uplink” laser beams associated with a laser-guide-star system recently installed at the telescope. The measurements revealed clear spectral lines due to Raman scattering by atmospheric molecular nitrogen, molecular oxygen, carbon dioxide, and water. And there were also hints of a line from methane. These Raman lines could contaminate the spectra of astronomical objects. The results are thus a cautionary tale for observatories that employ laser guide stars.

This research is published in Physical Review X.

–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Subject Areas

AstrophysicsOptics

Related Articles

The Universe’s Topology May Not Be Simple
Astrophysics

The Universe’s Topology May Not Be Simple

Most models for the overall shape and geometry of the Universe—including some exotic ones—are compatible with the latest cosmic observations. Read More »

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life
Astrophysics

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life

Researchers have quantified a pathway for the formation of molecular oxygen from the interaction of carbon dioxide with electrons, key information for searches of life on other worlds. Read More »

Exploring the Black Hole Population with an Open Mind
Gravitation

Exploring the Black Hole Population with an Open Mind

A new model describes the population of black hole binaries without assumptions on the shape of their distribution—a capability that could boost the discovery potential of gravitational-wave observations. Read More »

More Articles